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ABSTRACT

Cancer cachexia is a multifactorial syndrome characterized by persistent muscle atrophy,
functional impairment, anorexia, weakness, fatigue, anemia, and reduced antitumor treatment
tolerance. As a result, the patients’ quality of life suffers. Cachexia is responsible for
approximately 22-25 percent of cancer deaths. This article discusses the signs and symptoms
of cancer cachexia, as well as the mediators, treatment options, and future prospects for 3D
bioprinting. Protein breakdown, inflammatory cytokines activation, and mitochondrial
alteration are all factors that contribute to cachexia, according to research. Cachexia has
eluded standard treatment despite the use of proper nutrition, physical activity, anti-
inflammatory drugs, chemotherapy, and grafting attempts. By attempting to fabricate 3D
constructs that mimic native muscle tissues, 3D bioprinting shows a lot of promise when
compared to traditional methods. Some 3D bioprinting techniques have been discussed in
this review, along with their benefits and drawbacks, as well as their achievements and
challenges in in-vivo applications. Muscle atrophy can be repaired with neural integration or
muscle-tendon units. However, properly bio-printing these complex muscles remains a
challenge. Although new bio-inks or 3D printers can be used to fabricate high-resolution
constructs, progress can be made. This review study uses secondary data to show why 3D
bioprinting could be a viable alternative to treating cachexia.
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Furthermore, the patient begins to lose 30
percent of his or her body weight, which can
be fatal if no therapeutics are used [7].
Because the abnormal metabolism of cancer
cachexia affects fat tissues, which can target
skeletal muscles, oncologists must estimate
muscle loss rather than weight loss [8]. A
nitrogen flux from the skeletal muscle may
occur in the liver. This reduces the amount
of branched-chain amino acids in the blood,
which is needed to activate muscle protein
synthesis [9]. Because of a decrease in
mobility, fatigue, and physical activities,
cancer cachexia has a negative impact on a
patient’s quality of life [5,10].

INTRODUCTION

In all cancer patients, weight loss has
been identified as a common prognostic
factor. However, when it happens for no
apparent reason, even if the patient is eating
properly, the patient is left wondering what
went wrong. Cancer cachexia is a condition
characterized by a number of abnormalities
relating to weight loss [1]. Along with weight
loss, other abnormalities such as muscle loss
and insulin resistance are also observed.
Cachexia kills nearly 2 million people every
year [2,3]. Cachexia is said to be responsible
for 22-25 percent of cancer-related deaths
[4]. Cachexia is a multiorgan disorder that
results in protein-tissue loss or muscle
atrophy in the skeletal muscle. The loss of
muscle mass can be as high as 75% and 85%
of total body fat [5]. As a result, functional

Cancer cachexia has been the subject of
molecular mechanism studies for some time,
and it is still unclear what causes it to
develop. Due to increased exposure to

impairment occurs because the bodys SYr gical, r‘adlother apeutic, o and
skeletal muscle can regenerate lost tissue up chemotherapeutic treatment complications,
to a certain point after injury [6]. patients experience asthenia, anemia,
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(8]

fatigue, and anorexia [8,11]. The timing of the advanced
drugs and therapy administration was the cause of no
beneficial clinical results in several cases [12]. According to
experts, there are three stages of cancer cachexia: pre-
cachexia, cachexia, and refractory cachexia. As a result, their
treatments should be started as soon as possible in order to
prevent or delay the progression of refractory cachexia
[10,13].

There is currently no treatment, medicine, or surgery for
cancer cachexia that is both effective and free of side effects.
As a result, it is strongly advised that people strive to live
healthy lifestyles in order to avoid this condition. In our
rapidly aging society, there is a huge medical need for
therapies to treat degenerative muscle disease like cachexia.
Furthermore, there is no disease-modifying medication
available for cachexia [14].

Organ and tissue transplantation has had a 100% success
rate in saving patients with incurable diseases since its
discovery. However, the greatest disadvantage is that
demand has outpaced the number of donors. Especially in
the case of muscle tissue donors. However, in addition to
availability, limitations in immune system response and
organ rejection play a role. Tissue engineering with 3D
bioprinting is a method of overcoming this limitation [15].
Because of its ability to control geometry, 3D bioprinting has
emerged as the most promising method in tissue
engineering. We can now bioengineer various functional
skeletal muscle tissue constructs with complex geometry
thanks to recent advances in 3D bioprinting technologies. It
can fabricate a wide range of biomaterials, both with and
without cells, in a precise and controlled manner [16,17]. A
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3D-printed structure can also stimulate cellular activities,
improving the activity of electrically stimulated muscle
tissues. The 3D-printed constructs can assist in the repair or
even replacement of muscle loss caused by cachexia [15].
Despite the fact that experiments were limited to rats or time
constraints, 3D bioprinting appears to be a viable and
impressive solution to cachexia and muscle loss.

CAUSES AND MEDIATORS

Dysregulation of metabolism, increasing catabolic drives
for breaking down fat/protein, and dysregulation of
neurohormones are the 3 main factors that drive this disease
(Figure 1) [8].

Muscle loss usually occurs due to protein breakdown.
Cancer cachexia makes the myofiber of the cell membrane
weak, reduces dystrophin levels, and causes muscle
dystrophy [18]. People with cancer cachexia mostly have a
negative energy balance with an increasing need to rest.
Their need to rest increases frequently due to constant
thermogenesis, i.e., energy used is increased; energy intake is
reduced. So, patients with a good diet and nutrition intake
will still lose weight. This in turn makes them unable to do
physical activities [19,20].

Blood in our body also plays an active role in cancer
cachexia. They are means of transportation for tissue-
wasting tumor mediators that include factors contributing to
systemic inflammation (Figure 2) [21]. Additionally,
suppressor cells derived from myeloid (MDSCs) that expand
during cancer development were deemed to be a contributor
to murine cancer cachexia. This inducted acute phase
response (APR) and changed energy metabolic states [22].
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Figure 2. Cancer cachexia causing muscle-wasting, alteration in protein metabolism and reduces regeneration ability of muscles [19,21]

The presence of inflammatory cytokines like TNF-a, IL-
6, and IL-1b are mediators that contribute to cancer cachexia
[23,24]. The activation of TNF plays a role in suppressing
appetite which leads to degradation of the proteasomal
pathway [9]. This is a kind of alteration in mitochondria of
skeletal muscle [9,19].

Myostatin is a muscle differentiation and growth
regulator that acts as a negative autocrine. Myostatin
activates and signals through ActRII/SMAD?2,3-related
pathways [23,25]. Activin-A is expressed and secreted in
skeletal muscle as a result of tumor burden [26]. GDF11 and
MIC-1/GDF15 were discovered to act as cachexia mediators
in recent studies, exerting effects on appetite control via the
recently discovered receptor GFRAL. TGE- also played a role
in cancer-related muscle weakness [27,28].

SYMPTOMS AND CONSEQUENCES

Cachexia is characterized by a loss of weight and muscle
mass, as well as metabolic abnormalities. Fatigue and anemia
are the most common symptoms, which cause the patient to
be more tired than usual due to a gradual depletion of the
body’s energy and protein reserves [7,29]. Furthermore, it
makes patients more susceptible to drug-related toxicity,
resulting in a poor prognosis [30,31]. Cancer cachexia causes
cardiac muscle wasting, remodeling, and dysfunction in
addition to skeletal muscle loss. As a result, the risk of cardiac
death rises [32,33]. By increasing energy loss in tumor
glycolysis production and converting lactate to glucose,
cancer cachexia affects the liver’s functions (Figure 3) [34].

Patients experience chemosensory distress, hyper-
catabolism, and systemic inflammation as a result of their
reduced food intake [13]. Patients may experience side
effects such as anorexia, anemia, asthenia, diarrhea, and
nausea during chemotherapeutic sessions. They also deal
with a lack of food intake, body pain, depression, and
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insomnia [7,30]. Another issue with cachexia is that it cannot
be reversed with nutritional methods because the anabolic
response is disrupted [11,13].

Cachexia also activates hepatic acute-phase protein,
which encourages IL-1- and IL-6-producing macrophages to
infiltrate the liver. This can have a significant impact on the
escalation of systemic inflammation in cachexia [26,35,36].
Cachexia also causes bone loss (Figure 3) [37,38].

AVAILABLE REMEDIES AND TREATMENTS

The importance of a well-balanced nutritional diet
cannot be overstated. It is impossible to gain or maintain
mass and body weight without adequate energy and nutrient
supply. As a result, patients are nutritionally monitored
before they lose weight. This monitoring entails providing
nutritional and metabolic support to patients as needed
[10,13,39]. It was discovered that fish oil derived from fatty
acids has the ability to regulate pro-inflammatory cytokines
and improve insulin sensitivity [40]. Branched-chain amino
acids help to prevent muscle loss and protein breakdown
[41]. However, as previously stated, this disease cannot be
reversed solely through proper nutrition.

Modulation of skeletal muscle metabolism can improve
insulin sensitivity, regulate cellular homeostasis, and
promote myogenesis with physical exercise [42-44].
Exercising is necessary for the metabolism of skeletal muscle
[45]. Cachexia patients, on the other hand, face challenges
due to their physical limitations. They are prone to fatigue,
anemia, and cardiac problems, so physical activity takes a toll
on them [46].

Many anti-inflammatory drugs aid in the reduction of
inflammation caused by cachexia. Corticosteroids are a type
of medication that temporarily reduces fatigue and increases
appetite [47,48]. However, they are not advised for long-term
use because they can cause muscle wasting [49,50].
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Figure 3. Cancer Cachexia is a multifactorial disease that causes skeletal loss, which contributes to several other problems [5,6]

Furthermore, despite its immunomodulatory and anti-
inflammatory properties, thalidomide is not recommended
due to its severe side effects [51-53]. The activin type-II-B
receptor pathway can be blocked using ActRIIB decoy
receptors, according to a study, resulting in resistance to
muscle wasting. But it didn’t work because it caused internal
bleeding in the patients [54,55].

Weight during
chemotherapy or chemo-radiotherapy sessions, owing to
muscle atrophy. The side effects of cytotoxic and targeted
cancer therapies are extremely direct [30].

loss is a common occurrence

When muscle atrophy occurs in larger areas, autologous
muscle transfer is used, but this can result in trauma or nerve
injury, impairing motor functions [56,57]. In most cases,
grafting healthy muscle from a donor site is used to restore
the impaired function [58]. However, such grafting causes
morbidity [59]. Furthermore, most grafting procedures can
or will fail due to necrosis or infection caused by the donor
[60]. Allografts and xenografts can trigger a severe immune
response, resulting in rejection. The presence of antigens in
donor tissue causes this [61-63].

Because cachexia is a multidimensional
syndrome, most unimodal approaches are unlikely to be

effective. Overall, there are no agents, effective therapies,

cancer

surgeries, or medicines that are 100% effective in the
treatment of cancer cachexia.

3D BIOPRINTING
3D bioprinting is a relatively new strategy that, by
creating tissue constructs, can yield positive results in
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regenerative medicine. This strategy closely resembles the
natural structure of the tissue being targeted [64]. The 3D
structure that is retrieved via CT scan, MRI, and ultrasound
imaging is checked using a 3D scanner [15].

Bioprinting can be done in three ways: biomimicry,
autonomous self-assembly, and mini-tissues [65]. By
simulating the cellular microenvironment, biomimicry aids
in the replication of specific cellular functional components
of tissue [66].
assembly employs a guide. As 3D-biostructures, this guide
has stem cell and embryonic organ properties [67]. Smaller
functional building blocks can be printed on scaffolds and
integrated into a larger macrostructure using mini-tissues
[68,69].

For both non-biological and biological applications,
inkjet printers are used [70]. Inkjet-bioprinters are used in
the bioprinting of tissues and organs due to the availability
of commercial products and ease of modification (Figure-4).
The ease of access to a bioprinting platform and the high
processing speed at a relatively low cost are two major

For more complexity, autonomous self-

advantages. However, one significant disadvantage is the
limited selection of bio-ink materials available. To be shot
out of the nozzle, the material must be liquid and viscous.
Another issue is cell density, which can clog the nozzle and
cause damaged cells [15,17].

Modified laser direct writing and laser-induced forward
transfer techniques are used in laser-assisted bioprinting
(LAB). It can print a wide range of cells while retaining
viability (Figure 4) [65]. LAB can print high-cell densities
and hydrogel precursors by positioning small drops of
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biomaterial at high resolution. This can be done with any  rapid fabrication is lengthy and inconvenient [73]. Lasers
viscosity you want [71,72]. However, the time required for  that emit UV light can also have a negative impact on cells.

www.jceionline.org Copyright © 2021 by Authors. Licensee Modestum. OPEN ACCESS for all. | 5/15


http://www.jceionline.org/

3D Bioprinting for Cancer Cachexia Treatment

Biomaterials used in extrusion bioprinters are more
diverse. Biocompatible copolymers, hydrogels, and cell
spheroids are examples. They have enough viscosity to be
printed (Figure 4). However, it has drawbacks, such as cell
death caused by shear stress and rapid cell encapsulation
[15,17].

A laser-assisted bioprinting
stereolithography (SLA) process. This system produces
realistic microstructures by photocuring
photopolymerizable liquid polymers, resulting in 3D

system drives the

structures (Figure 4) [74].
BIO-INKS

Bio-inks are living cells and biomaterials that, after 3D
printing, can mimic the extracellular matrix environment,
cell adhesion, and proliferation. It’s a type of biomaterial
that’s used to make living tissue. They usually have cells
suspended in a liquid solution [75]. It is made up entirely of
cells. Most have a 3D-molecular scaffold made of biopolymer
gel as an additional carrier material. Cells can grow, spread,
and proliferate when they attach to this. Natural or synthetic
polymers with good biocompatibility are usually chosen. The
bio-ink is what keeps the cells safe during the printing
process [76].

3D bioprinting employs a variety of bio-inks to create
cell-laden tissue constructs with sufficient strength and the
ability to keep cells moist while printing without clogging the
nozzle. Gelatin, Poly (ethylene glycol) alginate, hydrogels,
collagen, and hyaluronic acid are among the materials used.
Printability, biocompatibility, mechanical property, and ease
of spatial arrangement are some of the most important
characteristics of a bio-ink [70].

PRINTABLE BIOMATERIALS

A major obstacle for bioprinting is finding new
biomaterials where cells can survive with their potency intact
after being printed [77]. The biomaterials need to have an
enhanced surrounding that helps host tissue formation.
Strong and stiff mechanical strength is needed to provide
sufficient support, handling, and implantation for cells
[78,79]. The biomaterials need proper, so that, the internal
structures do not break apart [80]. The biomaterials should
also have maturation, proliferation, biocompatibility,
biodegradability, differentiation, and be less immunogenic
[78,81].

The biomaterials used for printing are categorized into
synthetic and natural polymers. Synthetic polymers have the
mechanical strength needed for printing and processing
[82]. They help to precisely control molecular weight and
functional groups but lack motifs that are cell-responsive. On
the other hand, natural polymers are biodegradable and
biocompatible. But they are mechanically weak [83].

Some examples of bio-ink can be alginate, gelatin,
collagen, fibrin, hyaluronic acid (HA), agarose, chitosan, silk,
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decellularized extracellular matrix (dECM), poly(ethylene
glycol) (PEG), etc. [84].

AVAILABLE REMEDIES VIA 3D BIOPRINTING

Muscle Tissue Regeneration by Electrospinning

Injury to the musculoskeletal system is fairly common,
and poor healing can result in long-term impairment [85].
Several studies and experiments using 3D bioprinting have
yielded positive results and a number of benefits in muscle
reconstruction [86]. Electrospinning is a technique for
achieving a fibrous structure. This allows synthetic/natural
polymers to be used to control arrangement, structural, and
biochemical properties. Miji Yeo and GeunHyung Kim
conducted research in which micro-fibrous bundles were
stretched uniaxially to create a fully aligned 3D structure.
With the help of the electrospinning process, the authors
developed an electrohydrodynamic (EHD) printing process.
They used micro-sized poly(-caprolactone) (PCL) to create a
3D-fibrous structure [87]. Collagen-coated surfaces were
also extremely biocompatible. Although all of the scaffolds
showed high cell viability and proliferation, differentiation
differed between them. They stretched the randomly
distributed fibers where the 3D-printed cells had a
homogeneous distribution to achieve optimal stretching. As
aresult, it has been demonstrated that this can boost cellular
activity. The native muscle structure was used to extract the
final structures. It was thus possible to regenerate muscle
tissue [88]. Patients with cachexia experience skeletal muscle
loss. With more research and testing, muscle tissue
regeneration for their muscle loss may be possible using
electrospinning. When muscle transplants are performed on
patients, the high vitality and proliferation with a
homogeneous distribution that increases cell activities could
play a big role.

Creating 3D-Functional Muscle Constructs Using
Bio-ink and 3D Bioprinting

Despite having properties such as good proliferation and
differentiation, natural  hydrogels  (collagen) are
mechanically weak and unstable during the loading process
[89]. In the long run, it might not be feasible. As a result,
Choi et al developed a functional muscle construct using
mdECM (extracellular matrix) bio-ink and 3D bioprinting
technology in a study. They created a 3D-muscle construct
by printing C2C12 myoblasts encapsulated in mdECM bio-
ink. Decellularization was used to remove components while
preserving extracellular molecules. To supply nutrients and
oxygen to the tissue construct’s cells, the shape and porosity
of the construct were changed. This improved the viability
and function of the cells [90]. The study’s findings revealed
that mdECM bio-ink could print various shapes of 3D-
muscle constructs efficiently. This meant that the bio-ink
could be used to design and create original muscle structures
before they were implanted. It also had a high cell viability
(>90%) and minimal cell death [91]. Unlike CPCs, cell
proliferation was seen to increase in MPCs (mdECM bio ink-
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printed constructs) (collagen bio ink-printed constructs).
MPCs had higher myogenic gene expression, resulting in
increased cell stimulation and myogenic maturation. There
was evidence of the formation of structurally and
functionally mature fundamental contractile apparatus [92].
Furthermore, the 3D-printed muscle constructs were
capable of contracting in response to electrical stimulation.
This research found that using 3D cell printing and mdECM
bio-ink, researchers were able to create a biomimetic
architecture and induce mature myogenic development [93].
This method of 3D bioprinting holds a lot of promise
because it allows you to print different 3D-muscle constructs
that are similar to the original structures but have more
vitality. It has the potential to create functional engineered
muscle that can fight cancer cachexia, for example. Cachexia
patients lose different proportions of muscle tissue and cells
from their bodies. It can be very useful to be able to replace
lost tissues based on the original architectural structure that
was lost.

Treating Skeletal Muscle Defects Using 3D-
Bioprinted Muscle Constructs

Kim et al conducted a study to investigate the feasibility
of using 3D-bioprinted muscle constructs to treat skeletal
muscle defects, based on their initial success with the ITOP
(Integrated tissue-organ printer) system. For functional
muscle tissue reconstruction, they created skeletal muscle
constructs with structural integrity and skeletal muscle tissue
organization in this study. A skeletal muscle construct with
structural organization was bioengineered using ITOP
technology. Human muscle progenitor cell (hMPC)-laden
hydrogel bio-ink, sacrificing acellular gelatin hydrogel bio-
ink, and a supporting poly(-caprolactone) (PCL) polymer
made up the muscle construct. Multiple myofiber bundles
were highly organized in 3D-bioprinted muscle constructs in
the live/dead analysis. When compared to non-printed
muscle constructs, bio-printed muscle constructs had a
higher cell viability. It was also discovered that 3D-printed
organized muscle structure can speed up tissue maturation.
The microchannel structure allowed nutrients and oxygen to
diffuse into the bio-printed constructs, ensuring cell
viability. These findings demonstrated that the ITOP system
can produce skeletal muscle constructs with highly viable,
differentiated, densely packed myofibers across a wide cell
density range.

In mice, they created a muscle defect by removing 30—
40% of the original TA (Tubagus anterior) muscles [94].
Without treatment, this defect resulted in irreversible
functional deficits [95]. The bio-printed muscle constructs
were inserted into the defect. In those who were not treated,
the created defect resulted in severe muscular atrophy. The
bio-printed group, on the other hand, maintained their
original muscle volume. In addition, their tetanic muscle
force and TA muscle weight increased significantly. When
compared to non-printed groups, they had an 82 percent

www.jceionline.org

restoration of their TA muscle. The bio-printed group’s TA
muscle weight also increased. The bio-printed muscle group
had superior muscle volume maintenance and myofiber
formation with organized architecture when stained with
H&E and Masson’s trichrome. The development of the other
groups was limited. For reconstructing the extensive muscle
defect injury, the bio-printed muscle constructs were more
mature and maintained their cellular organization. The 3D-
ITOP system used in this study allows the bioengineered
skeletal muscle to overcome its current size and spatial
organization limitations. This study was able to create viable
skeletal muscle constructs that could mimic the cellular
function of native skeletal muscle by printing three
components at the same time. Because large-scale cell-based
constructs limit oxygen and nutrient supply, a microchannel
structure was created in bio-printed muscle constructs
[96,97]. The feasibility of using 3D-bioprinted muscle
constructs containing human primary muscle cells was
demonstrated in this study. It had a lot of positive qualities
and outcomes. It’s impressive to be able to print a high-
viability muscle tissue construct from a wide range of cell
densities. Patients with cachexia experience muscle and
weight loss. However, if 3D bioprinting with PU and PCL is
done correctly, there is a chance of 82 percent muscle mass
restoration and good maintenance. However, more research
is needed to see if constructs can completely replace native
muscle tissues in humans, both functionally and structurally.
Because of the use of rat cells in this method, drug screening
in humans may be hampered [65,98,99].

Restoration of Muscle Function by Neural Cell
Integrated 3D-muscle Constructs

Without nerve supply, skeletal muscles lose their
contractility and face muscles atrophy [100,101]. Denervated
bioengineered skeletal muscle constructs with cultured
muscle cells are required to integrate quickly with the host
nervous system [101,102]. Muscle atrophy will occur if it
fails, and functional recovery will be hampered. Most studies
did not go into great detail about this. As a result, Kim et al
created a neural cell-integrated human skeletal muscle
construct. Human muscle progenitor cells (hMPCs) and
human neural stem cells were 3D bioprinted (hNSCs). Long-
term survivability and maturation of the bio-engineered
skeletal muscle construct were improved by neural
integration within the construct. To test the feasibility of
using this method, the bio-printed constructs were
implanted in a rat model of tibialis-anterior (TA) muscle
defect injury. The cell survival and maturation of the 3D-
bioprinted skeletal muscle constructs were increased, and
they were implanted in the defective sites for regeneration.
The non-treated group showed no improvement and
suffered from severe muscular atrophy. The 3D-printed
group, on the other hand, had their TA muscle volume and
weight restored. The restoration rate was 71.42 percent. This
study found that incorporating neural cell components into
3D-bioprinted skeletal muscle constructs can speed up
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muscle restoration and function in people who have lost alot
of muscle mass. In-vivo, the intervention could take up to 12
weeks. Rapid innervation of the host nerve is essential for
constructs to restore muscle function in vivo. Intriguingly,
muscle weight was quickly recovered in the 3D-bioprinted
showed complete

group. The 3D-bioprinted group

restoration based on muscle force measurements.

As aresult, the findings suggest that incorporating neural
cell components into bio-printed skeletal muscle constructs
could speed up muscle recovery. The surgically excised
regions of the TA in the non-treated group showed no sign
of muscle regeneration, but fibrotic tissue formed in the
defect atrophy. Rapid
innervation with the host nerve is critical for the success of
bioengineered skeletal muscle constructs in restoring the
function of injured muscle in vivo. Finally, in a rat TA muscle
defect model, neural cell components can support bio-

region, leading to muscular

printed skeletal muscle constructs in vitro, resulting in rapid
muscle function restoration [103]. Similar to the previous
study, this method had the limitation of being tested on rats.
This requires more research because it has the potential to
help people with cachexia. Even though they are getting
enough nutrition, the patients are losing muscle tissue. If a
3D bioprinting technique is used, this problem can be solved.
This method demonstrated that muscle tissue can survive
and mature for a long time. A restoration rate of 71.42
percent, and that too with speed, is something to consider in
clinical trials for cachexia patients.

Engineering Integrated Muscle-Tendon Unit via 3D-
Bio-fabricating Complex Structures

Typically, cells can be manually seeded into tissue-
engineered constructs with a porous structure [104,105].
This method has drawbacks such as difficulty seeding a
scaffold uniformly, inability to distribute multiple cell types,
and poor scaffold micro-architecture control. These
limitations could be overcome with 3D bioprinting [70,106].
Tyler and colleagues used 3D-bio-fabrication of complex
structures to achieve this. They created an integrated
muscle-tendon unit using a variety of synthetic biomaterials
and cell types (MTU). The MTU construct was made up of
two synthetic polymeric materials for the scaffolding and two
cell-laden hydrogel-based bio-inks for the cellular
The scaffolding component provided a
biomechanical and functional structure, while the cellular

component.

component provided the biological basis for tissue
development. The muscle side of the MTU was made with
thermoplastic polyurethane (PU) and C2Cl12 myoblasts,
while the tendon side was made with poly(-caprolactone)
(PCL) and NIH/3T3 fibroblasts. These two were chosen
because PU and PCL, respectively, can mimic muscle
elasticity and tendon stiffness. Although the tensile strength
did not differ, the PU side was more elastic than the PCL side.
To re-create the MTU, a construct was created with three
distinct regions: printed PU on the muscle side, printed PCL
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on the tendon side, and overlapped PU-PCL on the MTJ
(muscle-tendon junction) region. The cells were discovered
to have survived the printing process and had begun to
develop into linearized tissue. It was designed to look like
natural muscle and tendon in terms of biological
architecture. Furthermore, it was discovered that the
NIH/3T3 cells had formed dense collagen deposition. This
was the start of the tendon’s development. With C2C12
(92.72.5%) and NIH/3T3 (89.13.33%), this resulted in high
cell viability [107]. Cells remained in their original positions
and organized themselves into a predictable pattern. They
were able to demonstrate that transcription of focal adhesion
markers increased. The ability to expose constructs made
from synthetic polymers and cell-laden bio-inks to
biomechanical stimulation is a benefit of having them made
from synthetic polymers and cell-laden bio-inks. As a result,
they were able to print cells that were viable. These cells have
increased MTJ-associated gene expression and were aligned
into highly aligned morphology of muscle and tendon.

The time required to culture constructs was identified as
a limitation in this study. A long period of time was required
to create a fully integrated muscle-tendon tissue unit. It’s
because focal adhesions between the muscle and tendon
can’t form until collagen is deposited in the MTJ [108]. This
study demonstrated that 3D-bioprinting can be used to print
muscle cells. The end products would be structurally and
biomechanically functional, with normal biological tissue
development, and would be implanted in cachexia patients.
After being printed, the 3D construct becomes a linearized
tissue that can mimic natural muscle tissue. This may pave
the way to regaining muscle mass lost to cachexia. The time
constraint appears to be a minor setback in the context of a
brighter future.

USE OF 3D BIOPRINTING OTHER FIELDS AND
THEIR LIMITATIONS

For a long time, 3D bioprinting has been studied and
experimented with. It can also be used to treat cardiovascular
diseases (CVD). Experiments with printing 3D constructs
and putting them on mice, as well as several other trials, are
underway. Tissue implants via grafting have been used in the
past, but problems with tissue rejection and a lack of donors
have arisen [109-111]. CVD causes the heart’s cell structures
to  deteriorate, necessitating replacement.  These
replacements are made using 3D bioprinting technology. To
restore the functions of damaged myocardium, cardiac
patches made of biomaterials and bio-inks were created.
Atmanli et al. developed 3D-functional cardiac patches that
could maintain myocardial tissue structure [112]. Another
study led by Ong et al was able to create 3D-biomaterial
cardiac patches that were able to beat spontaneously [113].
Using ink-jet printing, Xu et al. created functional cardiac
pseudo-tissues with structural support. It showed contractile
behavior when exposed to mild electrical stimuli [114].
Inkjet printers, on the other hand, are only compatible with
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low viscosity inks. As a result, ink-jet printer-made
structures have weaker mechanical properties [70,115,116].
Furthermore, a discretized flow causes restriction to thin
structures, as well as excessive thermal stress and the risk of
cell lysis [115]. Cell viability and functionality may suffer as
a result of such circumstances. High cell density, cell
viability, and the selection of a single cell for transfer are all
possible with the LAB system [110,117]. The resolution of
LAB is dependent on a number of factors, and it is also
expensive, so this system is not commercially available
[110,118]. The SLA technique for bioprinting 3D-cardiac
patches and heart valves has shown a lot of promise,
including reduced printing time, improved fabrication
accuracy, and increased cell viability [115]. However,
because lasers are used, they have drawbacks, and the optics
required are costly [74]. It is still difficult to create tissue with
a high oxygen consumption rate. It’s difficult to print
capillaries at the submicron scale when bioprinting
vascularized thick tissues [17,119].

To test the effectiveness of 3D-bioprinted vasculature,
researchers used immunodeficient mice. Endothelium has
been generated by colonizing endothelial cells in studies, but
the native structure is so complex that proper replication is
difficult [120,121]. After numerous trials, it was discovered
that a solution of greater than 15wt percent is best to use for
GelMA/C to achieve rapid gelation for 3D-bioprinting.
Although it became difficult to handle when the bio-ink
solution concentration exceeded 30% by weight. The reason
for this was primarily due to the high viscosity of the liquid.
The 3D-bioprinted vasculature, on the other hand, replicates
biomimetic vessel structures with smooth muscle and
endothelium. As a result, researchers are now looking into
3D bioprinting of tissue constructs, though some tweaking is
still needed to improve the methods [122].

Similarly, 3D bioprinting has come a long way in skeletal
muscle regeneration. Several studies have also been carried
out over the years. Muscle tissue can be regenerated, for
example, using electrospinning, according to future research
and experiments. When muscle transplants are performed
on patients, the high vitality and proliferation of constructs
with a homogeneous distribution that increases cell activities
could play a big role. Muscle atrophy can be reduced by
different shapes of 3D-muscle constructs that are physically
printed out according to their native structure. Cachexia
patients lose muscle tissue despite consuming nutrition on a
daily basis. Because cachexia patients lose muscle tissue in a
deplorable manner, the ability to create replicants of lost
tissues based on the original architectural structure can
provide hope and motivation to continue fighting.

The use of 3D bioprinting techniques on mouse
specimens yielded positive results. It’s impressive to be able
to print from a variety of cell densities. These 3D bioprinters,
which will be implanted in the host subject, are expected to
develop normally and resemble natural muscle tissue. They
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can work and function in the same way that the original
muscle did before it was lost. However, because the
experiments were carried out on mice, it is still unknown
how well they will work for human grafting and implanting.
Studies have already shown that muscle restoration and
maturation can be achieved using a 3D-bioprinted muscle
construct.

CONCLUSION

Several technologies and methods have been used to
create 3D-muscle constructs, but none of them has been able
to accurately mimic the morphology of muscle tissues in
their natural state [123,124]. However, 3D bioprinting has
emerged as a powerful tool for creating bioengineered
skeletal muscle constructs. Because these methods can
produce structurally complex cell-based constructs by
precisely positioning multiple cell types, bioactive factors,
and biomaterials within a single architecture to mimic native
tissues, they are becoming increasingly popular
[65,93,125,126]. 3D bioprinting has allowed for much more
precise construction of dense constructs with rapid
maturation [70,125,127]. However, more research and
development in 3D bioprinting for human skeletal muscle is
required. There are many cell sources for skeletal muscle
tissue, but most of them can only be expanded in vitro to a
limited extent. So, despite its progress to date, 3D bioprinting
still faces significant challenges. Problems such as a lack of a
biocompatible bio-ink with supportive mechanical
properties for 3D-cell culture can cause cell accuracy and
structural organization to suffer [93,125]. It does, however,
provide hope and a chance of survival. Because 3D
bioprinting allows for more flexibility in the development of
engineering skeletal muscle tissues than traditional models
[128]. Available 3D bioprinting methods may have
drawbacks such as time constraints, tests limited to mice, and
so on. However, these are minor setbacks that can be
overcome with more research and experiments in the future.

Because cells and tissues can be constructed to create 3D-
bioprinted muscle constructs and tendon units, it is expected
that applications for 3D bioprinting will improve in the
coming years as methods for 3D bioprinting technology
become more widely used. These are sufficient reasons to
incorporate these techniques into a cachexia application. The
method can be improved by developing new bio-inks and
printers capable of projecting high-resolution constructs.
Future experiments may benefit from more in-depth
research into muscle tissues and how they function. Finally,
it is very likely that 3D bioprinting will be able to combat the
muscle loss problem caused by cachexia.
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